5 research outputs found

    Modelowanie system贸w dynamicznych przy u偶yciu dynamicznych sieci Bayesowskich

    No full text
    Bayesian networks (BNs) are powerful tools for modeling complex problems involving uncertain knowledge. They have been employed in practice in a variety of fields. Their extension to time-dependent domains, dynamic Bayesian networks (DBNs) allow to monitor and update the system as time procedes and predict further behavior of the system. Most practical uses of DBNs involve temporal influences of the first order, i.e., influences between neighboring time steps. This choice is a convenient approximation influenced by the existence of efficient algorithms for first order models and limitations of available tools. This paper presents how to create higher order dynamic Bayesian networks and shows that introducing higher order influences can improve the accuracy of the model. To introduce the formalism to the readers, it describes a hypothetical simplified model based on a DBN.Sieci Bayesowskie (Bayesian networks, BNs) s膮 popularnym narz臋dziem do reprezentacji wiedzy w warunkach niepewnosci. Znalaz艂y praktyczne zastosowanie w wielu dziedzinach. Ich rozszerzenie o domen臋 czasow膮 dynamiczne sieci bayesowskie (dynamic Bayesian networks, DBNs) umozliwiaj膮 monitorowanie oraz aktualizacj臋 system贸w zmieniaj膮cych si臋 wraz z up艂ywem czasu, a takze predykcj臋 przysz艂ego stanu takiego systemu. Wi臋kszo艣膰 praktycznych zastosowa艅 dynamicznych sieci Bayesowskich bierze pod uwag臋 tylko zale偶no艣ci pierwszego rz臋du, to znaczy, 偶e bie偶膮cy stan systemu zale 偶y tylko od jego stanu w bezpo艣rednio poprzedzaj膮cym go kroku czasowym. Takie za艂o偶enie jest uproszczeniem, wynikaj膮cym najprawdopodobniej z braku efektywnych narz臋dzi zdolnych obs艂u偶y膰 modele wy偶szych rz臋d贸w. Niniejszy artyku艂 przedstawia na przyk艂adzie spos贸b w jakim tworzy si臋 modele wy偶szych rz臋d贸w oraz pokazuje, wp艂ywy wy偶szych rz臋d贸w mog膮 zwi臋kszyc jako艣膰 modelu

    Por贸wnanie metod uzupe艂niania danych brakuj膮cych w uczeniu modeli probabilistycznych

    No full text
    Missing data is a common problem in statistical analysis and most practical databases contain missing values of some of their attributes. Missing data can appear for many reasons. However, regardless of the reason for the missing values, even a small percent of missing data can cause serious problems with analysis reducing the statistical power of a study and leading to draw wrong conclusions. In this paper the results of handling missing observations in learning probabilistic models were presented. Two data sets taken from UCI Machine Learning Repository were used to learn the quantitative part of the Bayesian networks. To provide the opportunity to compare selected data sets did not contain any missing values. For each model data sets with variety of levels of missing values were artificially generated. The main goal of this paper was to examine whether omitting observations has an influence on model鈥檚 reliability. The accuracy was defined as the percentage of correctly classified records and has been compared to the results obtained in the data set not containing missing values.Brakuj膮ce dane s膮 cz臋stym problemem w analizie statystycznej, a wi臋kszo艣膰 baz danych zawiera brakuj膮ce warto艣ci niekt贸rych z ich atrybut贸w. Brakuj膮ce dane mog膮 pojawia膰 si臋 z wielu powod贸w. Jednak bez wzgl臋du na przyczyn臋 brakuj膮cych warto艣ci nawet ich niewielki procent mo偶e spowodowa膰 powa偶ne problemy z analiz膮, zmniejszaj膮c si艂臋 statystyczn膮 badania i prowadz膮c do wyci膮gni臋cia b艂臋dnych wniosk贸w. W artykule przedstawiono wyniki uzupe艂niania danych brakuj膮cych w uczeniu modeli probabilistycznych. Dwa zestawy danych pobrane z repozytorium uczenia maszynowego UCI pos艂u偶y艂y do wytrenowania ilo艣ciowej cz臋艣ci sieci bayesowskich. Aby zapewni膰 mo偶liwo艣膰 por贸wnania wybrane zbiory danych nie zawiera艂y 偶adnych brakuj膮cych warto艣ci. Dla ka偶dego modelu zbiory danych z r贸偶nymi poziomami brakuj膮cych warto艣ci zosta艂y sztucznie wygenerowane. G艂贸wnym celem tego artyku艂u by艂o zbadanie, czy braki w obserwacjach maj膮 wp艂yw na niezawodno艣膰 modelu. Dok艂adno艣膰 zosta艂a zdefiniowana jako procent poprawnie zaklasyfikowanych rekord贸w i zosta艂a por贸wnana z wynikami uzyskanymi w zbiorze danych niezawieraj膮cym brakuj膮cych warto艣ci

    Modeling dynamic processes with memory by higher order temporal models

    No full text
    Most practical uses of Dynamic Bayesian Networks (DBNs) involve temporal influences of the first order, i.e., influences between neighboring time steps. This choice is a convenient approximation influenced by the existence of efficient algorithms for first order models and limitations of available tools. In this paper, we focus on the question whether constructing higher time-order models is worth the effort when the underlying system鈥檚 memory goes beyond the current state. We present the results of an experiment in which we successively introduce higher order DBN models monitoring woman鈥檚 monthly cycle and measure the accuracy of these models in estimating the fertile period around the day of ovulation. We show that higher order models are more accurate than first order models. However, we have also observed over-fitting and a resulting decrease in accuracy when the time order chosen is too high

    Por贸wnanie metod dyskretyzacji danych w uczeniu modeli probabilistycznych

    No full text
    Very often statistical method or machine learning algorithms can handle discrete attributes only. And that is why discretization of numerical data is an important part of the pre鈥損rocessing. This paper presents the results of the problem of data discretization in learning quantitative part of probabilistic models. Four data sets taken from UCI Machine Learning Repository were used to learn the quantitative part of the Bayesian networks. The continuous variables were discretized using two supervised and two unsupervised discretization methods. The main goal of this paper was to study whether method of data discretization in given data set has an influence on model鈥檚 reliability. The accuracy was defined as the percentage of correctly classified records.Bardzo cz臋sto algorytmy uczenia maszynowego nie s膮 przystosowane do korzystania ze zmiennych ci膮g艂ych. Z tego powodu dyskretyzacja danych jest istotn膮 cz臋艣ci膮 wst臋pnego przetwarzania. W artykule przedstawiono wyniki prac nad problemem dyskretyzacji danych w uczeniu modeli probabilistycznych. Cztery zestawy danych pobrane z repozytorium uczenia maszynowego UCI zosta艂y wykorzystane do nauczenia parametr贸w ilo艣ciowej cz臋艣ci sieci bayesowskich. Wyst臋puj膮ce w wybranych zbiorach zmienne ci膮g艂e by艂y dyskretyzowane przy u偶yciu dw贸ch metod nadzorowanych i dw贸ch nienadzorowanych. G艂贸wnym celem tego artyku艂u by艂o zbadanie, czy metoda dyskretyzacji danych w danym zbiorze ma wp艂yw na niezawodno艣膰 modelu. Dok艂adno艣膰 metod by艂a definiowana jako odsetek poprawnie sklasyfikowanych rekord贸w

    Modeling women's menstrual cycles using PICI gates in Bayesian network

    No full text
    A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs
    corecore